00:00:00 / 00:00:00
30 69

Spherical Plateau problem and applications

By Antoine Song

I will discuss an area minimization problem in certain quotients of the Hilbert sphere by countable groups. An early version of that setting appears in Besson-Courtois-Gallot’s work on the entropy inequality. As an application of this minimization problem, we obtain some stability results. For instance, consider a closed surface of genus at least $2$ endowed with a Riemannian metric $g$, and let $(S,g)$ be its universal cover. After normalizing $g$ so that the volume entropy of $(S,g)$ is $1$, it is well-known that the first eigenvalue $\lambda$ is at most $\frac14$, and equality holds if $g$ is a hyperbolic metric. The hyperbolic plane is in fact stable: if $\lambda$ is close to the upper bound $\frac14$, then $(S,g)$ is close to the hyperbolic plane in a Benjamini-Schramm topology.

Information about the video

  • Date of recording 09/12/2022
  • Date of publication 10/02/2023
  • Institution IHES
  • Language English
  • Audience Researchers
  • Format MP4

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback