Exposés de recherche

Collection Exposés de recherche

00:00:00 / 00:00:00
281 380

Complex torus, its good compactifications and the ring of conditions

De Askold Khovanskii

Apparaît également dans la collection : Perspectives in real geometry / Perspectives en géométrie réelle

Let $X$ be an algebraic subvariety in $(\mathbb{C}^²)^n$. According to the good compactifification theorem there is a complete toric variety $M \supset (\mathbb{C}^²)^n$ such that the closure of $X$ in $M$ does not intersect orbits in $M$ of codimension bigger than dim$_\mathbb{C} X$. All proofs of this theorem I met in literature are rather involved. The ring of conditions of $(\mathbb{C}^²)^n$ was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^²)^n$. Its construction is based on the good compactification theorem. Recently two nice geometric descriptions of this ring were found. Tropical geometry provides the first description. The second one can be formulated in terms of volume function on the cone of convex polyhedra with integral vertices in $\mathbb{R}^n$. These descriptions are unified by the theory of toric varieties. I am going to discuss these descriptions of the ring of conditions and to present a new version of the good compactification theorem. This version is stronger that the usual one and its proof is elementary.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19222103
  • Citer cette vidéo Khovanskii, Askold (21/09/2017). Complex torus, its good compactifications and the ring of conditions. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19222103
  • URL https://dx.doi.org/10.24350/CIRM.V.19222103

Bibliographie

  • Kazarnovskii, B., & Khovanskii, A. (2017). Newton polyhedra, tropical geometry and the ring of condition for $(\mathbb{C}^²)^n$. <arXiv:1705.04248> - https://arxiv.org/abs/1705.04248

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis