00:00:00 / 00:00:00
18 58

Espaces courbes de Gauss à Perelman, en passant par Einstein

By Jean-Pierre Bourguignon

Carl Friedrich Gauss est un des plus importants mathématiciens à la charnière des XVIIIème et XIXème siècles. Il a apporté des avancées majeures dans des domaines très divers des mathématiques. Il s'est particulièrement intéressé à la géométrie des surfaces, se demandant notamment comment on peut percevoir qu'une surface est "courbée" sans l'observer de l'extérieur – par exemple comment mesurer que la Terre n'est pas exactement sphérique.

Le document de Carl Friedrich Gauss qui contient l'acte de naissance de la notion de courbure intrinsèque, qui répond à cette question, par opposition à celle dite extrinsèque qui fait intervenir un espace plus grand dans lequel l'espace étudié serait plongé est les "Disquisitiones generales circa superficies curvas" publiées en 1828. La notion d'espace courbe s'est avérée centrale dans les développements ultérieurs de la géométrie jusqu'à nos jours, d'abord dans le cadre de la grandiose généralisation de la géométrie due à Bernhard Riemann puis dans celui de la relativité générale d'Albert Einstein et tout récemment pour la solution de la conjecture de Poincaré par Grisha Perelman. Le concept de courbure s'est révélé pertinent dans plusieurs champs scientifiques autres que les mathématiques comme la physique.

Informations about the video

  • Date of recording 2/10/10
  • Date of publication 4/11/21
  • Institution SMF
  • Language French
  • Audience General Public
  • Format MP4
  • Venue Bibliothèque Nationale de France

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorites collections
Give feedback