Shimura Varieties and Modularity (3/3)
We discuss vanishing theorems for the cohomology of Shimura varieties with torsion coefficients, under a genericity condition at an auxiliary prime. We describe two complementary approaches to these results, due to Caraiani-Scholze and Koshikawa, both of which rely on the geometry of the Hodge-Tate period morphism for the corresponding Shimura varieties. Finally, we explain how these vanishing results can be applied to local-global compatibility questions for the Galois representations constructed in the first lecture.