Summer School on the Langlands Program

Collection Summer School on the Langlands Program

Organizer(s) Pierre-Henri Chaudouard, Wee Teck Gan, Tasho Kaletha, Yiannis Sakellaridis
Date(s) 7/11/22 - 7/29/22
linked URL
00:00:00 / 00:00:00
10 58

Arthur's Conjectures and the Orbit Method for Real Reductive Groups

By Lucas Mason-Brown

The most fundamental unsolved problem in the representation theory of Lie groups is the Problem of the Unitary Dual: given a reductive Lie group G, this problem asks for a parameterization of the set of irreducible unitary G-representations. There are two big "philosophies" for approaching this problem. The Orbit Method of Kostant and Kirillov seeks to parameterize irreducible unitary representations in terms of finite covers of co-adjoint G-orbits. Arthur's conjectures suggest a parameterization in terms of certain combinatorial gadgets (i.e. Arthur parameters) related to the Langlands dual group G^{\vee} of G. In this talk, I will define these correspondences precisely in the case of complex groups. I will also define a natural duality map from Arthur parameters (for G^{\vee}) to co-adjoint covers (for G) which, in a certain precise sense, intertwines these correspondences. This talk is partially based on joint work with Ivan Losev and Dmitryo Matvieievskyi.

Information about the video

Last related questions on MathOverflow

You have to connect your account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback