Combinatorics and Arithmetic for Physics: special days 2023

Collection Combinatorics and Arithmetic for Physics: special days 2023

Organisateur(s) Gérard H. E. DUCHAMP, Maxim KONTSEVICH, Gleb KOSHEVOY, Sergei NECHAEV and Karol A. PENSON
Date(s) 15/11/2023 - 17/11/2023
URL associée https://www-lipn.univ-paris13.fr/~duchamp/Conferences/CAP10_2023.html
00:00:00 / 00:00:00
20 27

Introducing string field theory from a geometrical perspective

De Harold Erbin

String field theory (SFT) is a second-quantized version of string theory: it provides an explicit regularization of all amplitudes and allows using all the standard techniques from QFT. In this talk, I will explain how SFT is constructed from the data of a 2d CFT (defining the spacetime background) and a decomposition of the moduli space of Riemann surfaces. The latter is background independent and determines a geometrical BV algebra, which implies that the SFT action is a solution of the BV master equation. It also induces an L-infinity algebra, which characterizes the form of the action and of its gauge symmetries. To conclude, I will exemplify this interplay between geometry and field theory by showing how neural networks can be used to construct data on the moduli spaces and compute the closed string tachyon potential.

Informations sur la vidéo

  • Date de captation 17/11/2023
  • Date de publication 22/11/2023
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Bibliographie

  • Harold Erbin, Carlo Maccaferri, Martin Schnabl, Jakub Vošmera. Classical algebraic structures in string theory effective actions. arXiv:2006.16270
  • Harold Erbin, Atakan Hilmi Fırat. Characterizing 4-string contact interaction using machine learning. arXiv:2211.09129
  • Harold Erbin. String Field Theory -- A Modern Introduction. arXiv:2301.01686

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis