00:00:00 / 00:00:00
8 65

Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 2

By Timo Seppäläinen

Also appears in collection : Jean-Morlet Chair - Doctoral school: Random structures in statistical mechanics and mathematical physics / Chaire Jean-Morlet - Ecole doctorale : Structures aléatoires en mécanique statistique et physique mathématique

Busemann functions for the two-dimensional corner growth model with exponential weights. Derivation of the stationary corner growth model and its use for calculating the limit shape and proving existence of Busemann functions.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19138803
  • Cite this video Seppäläinen Timo (3/8/17). Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 2. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19138803
  • URL https://dx.doi.org/10.24350/CIRM.V.19138803

Domain(s)

Bibliography

  • Balázs, M., Cator, E., & Seppäläinen, T. (2006). Cube root fluctuations for the corner growth model associated to the exclusion process. Electronic Journal of Probability, 11(42), 1094–1132 - https://arxiv.org/abs/math/0603306
  • Balázs, M., & Seppäläinen, T. (2010). Order of current variance and diffusivity in the asymmetric simple exclusion process. Annals of Mathematics. Second Series, 171(2), 1237–1265 - http://dx.doi.org/10.4007/annals.2010.171.1237
  • Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2015). Ratios of partition functions for the log-gamma polymer. The Annals of Probability, 43(5), 2282–2331 - http://projecteuclid.org/euclid.aop/1441792286
  • Georgiou, N., Rassoul-Agha, F., & Seppäläinen, T. (2016). Variational formulas and cocycle solutions for directed polymer and percolation models. Communications in Mathematical Physics, 346(2), 741–779 - http://dx.doi.org/10.1007/s00220-016-2613-z
  • Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2013). Quenched free energy and large deviations for random walks in random potentials. Communications on Pure and Applied Mathematics, 66(2), 202–244 - http://dx.doi.org/10.1002/cpa.21417
  • Rassoul-Agha, F., & Seppäläinen, T. (2014). Quenched point-to-point free energy for random walks in random potentials. Probability Theory and Related Fields, 158(3-4), 711–750 - http://dx.doi.org/10.1007/s00440-013-0494-z

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback