2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Collection 2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Organizer(s) Hélein, Frédéric ; Ginot, Grégory ; Laurent-Gengoux, Camille
Date(s) 03/07/2023 - 07/07/2023
linked URL https://indico.math.cnrs.fr/event/7885/
00:00:00 / 00:00:00
9 21

Reduction of Courant algebroids via graded manifolds

By Marco Zambon

Courant algebroids are certain objects in Lie theory that are used to define, for instance, Dirac structures and generalized complex structures.

We will use the correspondence between degree 2 symplectic manifolds and Courant algebroids, due to Roytenberg, to approach the reduction of Courant algebroids using graded geometry. For this purpose we will consider both graded coisotropic submanifolds and a graded version of moment maps. The resulting reduction procedure, in a particular case, recovers the work of Bursztyn-Cavalcanti-Gualtieri around 2007. This talk is based on joint work with Bursztyn, Cattaneo and Metha.

Information about the video

Citation data

  • DOI 10.57987/IHP.2023.T2.WS3.009
  • Cite this video Zambon, Marco (04/07/2023). Reduction of Courant algebroids via graded manifolds. IHP. Audiovisual resource. DOI: 10.57987/IHP.2023.T2.WS3.009
  • URL https://dx.doi.org/10.57987/IHP.2023.T2.WS3.009

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback