2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Collection 2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Organizer(s) Hélein, Frédéric ; Ginot, Grégory ; Laurent-Gengoux, Camille
Date(s) 03/07/2023 - 07/07/2023
linked URL https://indico.math.cnrs.fr/event/7885/
00:00:00 / 00:00:00
7 21

Homotopy fiber product and dg manifolds of finite positive amplitudes

By Hsuan-Yi Liao

A main motivation for developing derived differential geometry is to deal with singularities arising from zero loci or intersections of submanifolds. Both zero loci and intersections can be considered as fiber products of manifolds which may not be manifolds. To deal with this issue, we extend the category of differentiable manifolds to the category of dg manifolds of finite positive amplitudes in which "homotopy fiber products" exist. In this talk, I would like to explain properties of this larger category (it is a category of fibrant objects) and our construction of homotopy fiber products of manifolds. The talk is mainly based on a joint work with Kai Behrend and Ping Xu.

Information about the video

Citation data

  • DOI 10.57987/IHP.2023.T2.WS3.007
  • Cite this video Liao, Hsuan-Yi (04/07/2023). Homotopy fiber product and dg manifolds of finite positive amplitudes. IHP. Audiovisual resource. DOI: 10.57987/IHP.2023.T2.WS3.007
  • URL https://dx.doi.org/10.57987/IHP.2023.T2.WS3.007

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback