2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Collection 2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Organisateur(s) Hélein, Frédéric ; Ginot, Grégory ; Laurent-Gengoux, Camille
Date(s) 03/07/2023 - 07/07/2023
URL associée https://indico.math.cnrs.fr/event/7885/
00:00:00 / 00:00:00
7 21

Homotopy fiber product and dg manifolds of finite positive amplitudes

De Hsuan-Yi Liao

A main motivation for developing derived differential geometry is to deal with singularities arising from zero loci or intersections of submanifolds. Both zero loci and intersections can be considered as fiber products of manifolds which may not be manifolds. To deal with this issue, we extend the category of differentiable manifolds to the category of dg manifolds of finite positive amplitudes in which "homotopy fiber products" exist. In this talk, I would like to explain properties of this larger category (it is a category of fibrant objects) and our construction of homotopy fiber products of manifolds. The talk is mainly based on a joint work with Kai Behrend and Ping Xu.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2023.T2.WS3.007
  • Citer cette vidéo Liao, Hsuan-Yi (04/07/2023). Homotopy fiber product and dg manifolds of finite positive amplitudes. IHP. Audiovisual resource. DOI: 10.57987/IHP.2023.T2.WS3.007
  • URL https://dx.doi.org/10.57987/IHP.2023.T2.WS3.007

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis