2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Collection 2023 - T2 - WS3 - Dg-manifolds in geometry and physics

Organisateur(s) Hélein, Frédéric ; Ginot, Grégory ; Laurent-Gengoux, Camille
Date(s) 03/07/2023 - 07/07/2023
URL associée https://indico.math.cnrs.fr/event/7885/
00:00:00 / 00:00:00
5 21

Arborescent Koszul-Tate resolutions and BFV for singular coisotropic reductions

De Thomas Strobl

Let I be an ideal in a commutative (associative) algebra O. Starting from a resolution of O/I as an O-module, we construct a Koszul-Tate resolution for this quotient, i.e.\ a graded symmetric algebra over O with a differential which provides simultaneously a resolution as an O-module. This algebra resolution has the beautiful structure of a forest of decorated trees and is related to an A-infinity algebra on the original module resolution. Considering O to be a Poisson algebra and I a finitely generated Poisson subalgebra, we use the above construction to obtain the corresponding BFV formulation. Its cohomology at degree zero is proven to coincide with the reduced Poisson algebra N(I)/I, where N(I) is the normaliser of I inside O, thus generalising ordinary coisotropic reduction to the singular setting. As an illustration we use the example where O consists of functions on T^*(\R^3) and I is the ideal generated by angular momenta.

This is joint work with Aliaksandr Hancharuk and, in part, with Camille Laurent-Gengoux.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2023.T2.WS3.005
  • Citer cette vidéo Strobl, Thomas (04/07/2023). Arborescent Koszul-Tate resolutions and BFV for singular coisotropic reductions. IHP. Audiovisual resource. DOI: 10.57987/IHP.2023.T2.WS3.005
  • URL https://dx.doi.org/10.57987/IHP.2023.T2.WS3.005

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis