Summer School 2024 - Low dimensional Topology

Collection Summer School 2024 - Low dimensional Topology

Organisateur(s) Scientific Committee: Greg Kuperberg, Christine Lescop, Gwénaël Massuyeau, Jean-Baptiste Meilhan / Organization Committee: Christine Lescop, Gwénaël Massuyeau, Jean-Baptiste Meilhan
Date(s) 17/06/2024 - 05/07/2024
URL associée https://if-summer2024.sciencesconf.org
00:00:00 / 00:00:00
41 42

Quandles are algebraic structures introduced independently by Joyce and Matveev in 1982 for coloring knots and links. Specifically, any finite quandle Q induces a link invariant, which associates to a link L the number col(L,Q) of possible colorings of L by elements of Q. One might ask how precise these invariants are: given two distinct links L and L′, is there always a finite quandle Q such that col(L,Q) is different from col(L′,Q)? It is conjectured that this is the case, provided L′ cannot be obtained by taking the mirror image of a part of L. The aim of this talk is not to prove this difficult conjecture, but to show that it can be reformulated in terms closely related to classical questions of profinite rigidity. This will lead us to explore a bit of the theory of profinite quandles.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis