Summer School 2024 - Low dimensional Topology

Collection Summer School 2024 - Low dimensional Topology

Organisateur(s) Scientific Committee: Greg Kuperberg, Christine Lescop, Gwénaël Massuyeau, Jean-Baptiste Meilhan / Organization Committee: Christine Lescop, Gwénaël Massuyeau, Jean-Baptiste Meilhan
Date(s) 17/06/2024 - 05/07/2024
URL associée https://if-summer2024.sciencesconf.org
00:00:00 / 00:00:00
14 42

Both Heegaard Floer homology and Khovanov homology admit relative versions associated with surface decompositions. In the case of a manifold with torus boundary, the Heegaard Floer invariant can be Both Heegaard Floer homology and Khovanov homology admit relative versions associated with surface decompositions. In the case of a manifold with torus boundary, the Heegaard Floer invariant can be interpreted in terms of immersed curves in a punctured torus; and in the case of a 4-ended tangle, the Khovanov invariant can be interpreted in terms of immersed curves in the 4-punctured sphere. While these invariants have different origins, this point of view highlights common algebraic underpinnings. Using mutation as a point of departure, this series will focus on Khovanov invariants in order to tell some of the algebraic and the geometric parts of this story.Lecture 1 (1 hour): Conway's mutation problemLecture 2 (1.5 hours): Bar-Natan's category from a bordered perspectiveLecture 3 (1.5 hours): Tangle invariants as immersed curvesLecture 4 (1 hour): Linearity: towards mutation invariance over any field

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis