Schubert calculus and self-dual puzzles
Apparaît également dans la collection : Exposés de recherche
Puzzles are combinatorial objects developed by Knutson and Tao for computing the expansion of the product of two Grassmannian Schubert classes. I will describe how selfdual puzzles give the restriction of a Grassmannian Schubert class to the symplectic Grassmannian in equivariant cohomology. The proof uses the machinery of quantum integrable systems. Time permitting, I will also discuss some ideas about how to interpret and generalize this result using Lagrangian correspondences and Maulik-Okounkov stable classes. This is joint work in progress with Allen Knutson and Paul Zinn-Justin.