2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Collection 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Organisateur(s) Ditlevsen, Susanne ; Faugeras, Olivier ; Galves, Antonio ; Reynaud-Bouret, Patricia ; Salort, Delphine ; Shinomoto, Shigeru
Date(s) 31/01/2022 - 04/02/2022
URL associée https://indico.math.cnrs.fr/event/6532/
00:00:00 / 00:00:00
11 30

Topological insights on neuronal morphologies

De Lida Kanari, Kathryn Hess

The morphological diversity of neurons supports the complex informationprocessing capabilities of biological neuronal networks. A major challenge in neuroscience has been to reliably describe neuronal shapes with universal morphometrics that generalize across cell types and species. Inspired by algebraic topology, we have developed a topological descriptor of trees that couples the topology of their complex arborization with their geometric structure, retaining more information than traditional morphometrics.

The topological morphology descriptor (TMD) has proved to be very powerful in separating neurons into well-defined groups on morphological grounds. The TMD algorithm led to the discovery of two distinct morphological classes of pyramidal cells in the human cortex that also have distinct functional roles, suggesting the existence of a direct link between the anatomy and the function of neurons. The TMD-based classification also led to the objective and robust morphological clustering of rodent cortical neurons.

The TMD of neuronal morphologies is also essential for the computational generation (i.e., synthesis) of dendritic morphologies. Our results demonstrate that a topology-based synthesis algorithm can reproduce both morphological and electrical properties of reconstructed biological rodent cortical dendrites. Since the topology-based synthesis can be generalized to a wide variety of different dendritic shapes, it is suitable for the generation of unique neuronal morphologies to populate the digital reconstruction of large-scale, physiologically realistic networks.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.011
  • Citer cette vidéo Kanari, Lida; Hess, Kathryn (01/02/2022). Topological insights on neuronal morphologies. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.011
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.011

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis