2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Collection 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Organisateur(s) Ditlevsen, Susanne ; Faugeras, Olivier ; Galves, Antonio ; Reynaud-Bouret, Patricia ; Salort, Delphine ; Shinomoto, Shigeru
Date(s) 31/01/2022 - 04/02/2022
URL associée https://indico.math.cnrs.fr/event/6532/
00:00:00 / 00:00:00
13 30

Beyond Blow-Up for Nonlinear Noisy Leaky Integrate and Fire neuronal models: numerical approach to the "plateau" state

De Alejandro Ramos Lora

The Nonlinear Noisy Leaky Integrate and Fire neuronal models are mathematical models that describe the activity of neural networks. These models have been studied at a microscopic level, using Stochastic Differential Equations, and at a mesoscopic/macroscopic level, through the mean field limits using Fokker-Planck type equations. To advance in the understanding of the NNLIF models, we have analyzed in depth the behaviour of the classical and physical solutions of the Stochastic Differential Equations and we compare it with what is already known about the Fokker-Planck equation, using a numerical study of their particle systems. This allows us to understand what happens in the neural network when an explosion occurs in finite time, which is one of the most important open problems about this kind of models. This allows us to go beyond the mesoscopic/macroscopic description. We answer one of the most important open questions about these models [1] : what happens after all the neurons in the network fire at the same time? We find that the neural network converges towards its unique steady state, if the system is weakly connected. Otherwise, its behaviour is more complex, tending towards a stationary state or a “plateau” distribution (membrane potentials are uniformly distributed between reset and threshold values). To our knowledge, these distributions have not been described before for these nonlinear models.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.013
  • Citer cette vidéo Ramos Lora, Alejandro (02/02/2022). Beyond Blow-Up for Nonlinear Noisy Leaky Integrate and Fire neuronal models: numerical approach to the "plateau" state. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.013
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.013

Bibliographie

  • 1 - Cáceres, M. J. and Ramos-Lora, A. / An understanding of the physical solutions and the blowup phenomenon for Nonlinear Noisy Leaky Integrate and Fire neuronal models. Communications in Computational Physics, vol. 30 n°3 (2021) : p. 820-850.

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis