2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Collection 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Organisateur(s) Ditlevsen, Susanne ; Faugeras, Olivier ; Galves, Antonio ; Reynaud-Bouret, Patricia ; Salort, Delphine ; Shinomoto, Shigeru
Date(s) 31/01/2022 - 04/02/2022
URL associée https://indico.math.cnrs.fr/event/6532/
00:00:00 / 00:00:00
16 30

Fluctuation limits for mean-field interacting nonlinear Hawkes processes

De Wilhelm Stannat

We investigate the asymptotic behavior of networks of interacting nonlinear Hawkes processes modelling a homogeneous population of neurons in the large population limit. In particular, we prove a functional central limit theorem for the mean spike-activity, thereby characterizing the asymptotic fluctuations in terms of a stochastic Volterra integral equation. Our approach differs from the usual approach via tightness of the associate martingale problem. Instead, we make use of the resolvent of the associated Volterra integral equation in order to represent fluctuations as Skorokhod continuous mappings of weakly converging martingales. Since the Lipschitz properties of the resolvent are explicit, our analysis in principle also allows to derive approximation errors in terms of driving martingales. We also discuss extensions of our results to multi-class systems.

The talk is based on joint work with S. Heesen.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.016
  • Citer cette vidéo Stannat, Wilhelm (02/02/2022). Fluctuation limits for mean-field interacting nonlinear Hawkes processes. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.016
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.016

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis