2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Collection 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Organisateur(s) Ditlevsen, Susanne ; Faugeras, Olivier ; Galves, Antonio ; Reynaud-Bouret, Patricia ; Salort, Delphine ; Shinomoto, Shigeru
Date(s) 31/01/2022 - 04/02/2022
URL associée https://indico.math.cnrs.fr/event/6532/
00:00:00 / 00:00:00
3 30

Marked Point Process Modeling and Estimation Problems in Neural Data Analysis

De Uri Eden

Point process modeling and estimation methods have become pervasive in the analysis of spiking data from neural populations. Recent technological developments have led to a massive increase in the size and dimensionality of neural datasets and focused researchers on models that can capture the structure of activity from populations of simultaneously recorded neurons. This has spurred the development of new modeling and estimation methods based on the theory of marked point processes.


In this talk, I will present a case study focused on understanding how mental exploration drives learning, which highlights a number of statistical problems that can be addressed under a marked point process modeling framework. I will discuss adaptive models that can capture nonstationarities in the data, goodness-of-fit methods that allow for model assessment and refinement, and state-space estimation methods that allow us to decode signals directly from the observed neural activity.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.003
  • Citer cette vidéo Eden, Uri (31/01/2022). Marked Point Process Modeling and Estimation Problems in Neural Data Analysis. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.003
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.003

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis