2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Collection 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Organisateur(s) Ditlevsen, Susanne ; Faugeras, Olivier ; Galves, Antonio ; Reynaud-Bouret, Patricia ; Salort, Delphine ; Shinomoto, Shigeru
Date(s) 31/01/2022 - 04/02/2022
URL associée https://indico.math.cnrs.fr/event/6532/
00:00:00 / 00:00:00
15 30

Spontaneous oscillations in a pure excitatory mean field networks of neurons

De Etienne Tanré

We consider a model of network of interacting neurons based on jump processes. Briefly, the membrane potential $V^i_t$ of each individual neuron evolves according to a one-dimensional ODE. Neuron i spikes at rate which only depends on its membrane potential, $f(V^i_t)$. After a spike, $V^i_t$ is reset to a fixed value $V^{rest}$. Simultaneously, the membrane potentials of any (post-synaptic) neuron $j$ connected to the neuron $i$ receives a $kick$ of value $J^{i,j}$.

We study the limit (mean-field) equation obtained where the number of neurons goes to infinity. In this talk, we describe the long time behaviour of the solution. Depending on the intensity of the interactions, we observe convergence of the distribution to a unique invariant measure (small interactions) or we characterize the occurrence of spontaneous oscillations for interactions in the neighbourhood of critical values.

The talk is based on joint works with Quentin Cormier (Princeton) and Romain Veltz (Inria)

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.015
  • Citer cette vidéo Tanré, Etienne (02/02/2022). Spontaneous oscillations in a pure excitatory mean field networks of neurons. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.015
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.015

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis