2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Collection 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

Organisateur(s) Ditlevsen, Susanne ; Faugeras, Olivier ; Galves, Antonio ; Reynaud-Bouret, Patricia ; Salort, Delphine ; Shinomoto, Shigeru
Date(s) 31/01/2022 - 04/02/2022
URL associée https://indico.math.cnrs.fr/event/6532/
00:00:00 / 00:00:00
19 30

Metastable spiking networks in the replica-mean-field limit

De Luyan Yu

Characterizing metastable neural dynamics in finite-size spiking networks remains a daunting challenge. We propose to address this challenge in the recently introduced replica-mean-field (RMF) limit. In this limit, networks are made of infinitely many replicas of the finite network of interest, but with randomized interactions across replica. Such randomization renders certain excitatory networks fully tractable at the cost of neglecting activity correlations, but with explicit dependence on the finite size of the neural constituents.

However, metastable dynamics typically unfold in networks with mixed inhibition and excitation. Here, we extend the RMF computational framework to point-process-based neural network models with exponential stochastic intensities, allowing for mixed excitation and inhibition. Within this setting, we show that metastable finite-size networks admit multistable RMF limits, which are fully characterized by stationary firing rates. Technically, these stationary rates are determined as solutions to a set of delayed differential equations under certain regularity conditions that any physical solutions shall satisfy. We solve this original problem by combining the resolvent formalism and singular- perturbation theory. Importantly, we find that these rates specify probabilistic pseudo-equilibria which accurately capture the neural variability observed in the original finite-size network. We also discuss the emergence of metastability as a stochastic bifurcation, which can also be interpreted as a static phase transition in the RMF limits. In turn, we expect to leverage the static picture of RMF limits to infer purely dynamical features of metastable finite-size networks, such as the transition rates between pseudo-equilibria.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.019
  • Citer cette vidéo Yu, Luyan (03/02/2022). Metastable spiking networks in the replica-mean-field limit. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.019
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.019

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis