![[1241] Théorie de l’homotopie motivique et groupes d’homotopie stables, d’après Morel–Voevodsky, Isaksen–Wang–Xu, ...](/media/cache/video_light/uploads/video/Bourbaki.png)

[1241] Théorie de l’homotopie motivique et groupes d’homotopie stables, d’après Morel–Voevodsky, Isaksen–Wang–Xu, ...
By Frédéric Déglise
Appears in collection : Chromatic Homotopy, K-Theory and Functors / Homotopie chromatique, K-théorie et foncteurs
Hilbert's Nullstellensatz is a fundamental result in commutative algebra which is the starting point for classical algebraic geometry. In this talk, I will discuss a version of Hilbert's Nullstellensatz in chromatic homotopy theory, where Lubin-Tate theories play the role of algebraically closed fields. Time permitting, I will then indicate some of the applications of the chromatic nullstellensatz including to redshift for the algebraic K-theory of commutative algebras. This is joint work with Tomer Schlank and Allen Yuan.