2 videos

6 videos

5 videos

6 videos

## 9e Journée Statistique et Informatique pour la Science des Données à Paris-Saclay

00:00:00 / 00:00:00

## Bounded remainder sets for the discrete and continuous irrational rotation

Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy $\sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$ is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, Ostrowski and Kesten characterized the intervals with this property. We will discuss the bounded remainder property for sets in higher dimensions. In particular, we will see that parallelotopes spanned by vectors in $\mathbb{Z}\alpha + \mathbb{Z}^d$ have bounded remainder. Moreover, we show that this condition can be established by exploiting a connection between irrational rotation on $\mathbb{T}^d$ and certain cut-and-project sets. If time allows, we will discuss bounded remainder sets for the continuous irrational rotation $\lbrace t \alpha : t$ $\epsilon$ $\mathbb{R}^+\rbrace$ in two dimensions.

### Citation data

• DOI 10.24350/CIRM.V.19172203
• Cite this video Grepstad, Sigrid (25/05/2017). Bounded remainder sets for the discrete and continuous irrational rotation. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19172203
• URL https://dx.doi.org/10.24350/CIRM.V.19172203

### Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

## Register

• Bookmark videos
• Add videos to see later &