Nexus Trimester - 2016 - Central Workshop

Collection Nexus Trimester - 2016 - Central Workshop

Organizer(s)
Date(s) 03/05/2024
00:00:00 / 00:00:00
18 20

This talk focuses on distributed control of dynamical flow networks. These are modeled as dynamical systems derived from mass conservation laws on directed capacitated networks. The flow evolution through the network is governed by routing and flow control policies within constraints imposed by the network infrastructure and physical laws. Depending on the application (e. g. , transportation or distribution networks), such policies are meant to represent local controls, drivers’ behavior, or a combination of the two. Versions of these models include cascading failures mechanisms, whereby overloaded links become inactive and potentially induce the overload and failure of other nodes and links in the network. We focus on efficiency, resilience, and scalability. First, we show that optimal resilience can be achieved by local feedback policies that require no global knowledge of the network. Then, we prove how optimal equilibrium selection and optimal control of the transient behavior can be cast as convex problems which are amenable to distributed solutions. Finally, we study multi-scale flow dynamics and the use of toll mechanisms to influence users’ behaviors.

Information about the video

  • Date of recording 29/02/2016
  • Date of publication 14/03/2016
  • Institution IHP
  • Format MP4

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback