Diophantine approximation and transcendence 2025 / Approximation diophantienne et transcendance 2025

Collection Diophantine approximation and transcendence 2025 / Approximation diophantienne et transcendance 2025

Organisateur(s) Bugeaud, Yann ; Demarco, Laura ; Gaudron, Eric ; Habegger, Philipp
Date(s) 10/11/2025 - 14/11/2025
URL associée https://conferences.cirm-math.fr/3367.html
00:00:00 / 00:00:00
1 6

We explain how the classical Thue hypergeometric Pade method gets encoded into the formal framework of the previous talk by Yunqing Tang on our joint work with Frank Calegari, and how it continues with the more recent methodology of multivalent holonomy bounds. The primary focus here is on the algebraic Apery limits, and therefore on effectivity. We outline self-contained proof of a basic, but completely explicit holonomy bound that includes a Diophantine approximation term, and we explain how to apply it to effectivize the Thue-Siegel square root exponent for Diophantine approximation to high order roots from a fixed rational number. well-known geometry of numbers argument of Bombieri's allows to thereafter recover an effective height bound on the solutions to the general S-unit equation in two variables.

Document25.pdf : Complete lecture slides (with page 24/43 correcting a typo at time 14:30 of the recording).

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20403803
  • Citer cette vidéo Dimitrov, Vesselin (10/11/2025). The arithmetic of power series - Lecture 2. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20403803
  • URL https://dx.doi.org/10.24350/CIRM.V.20403803

Bibliographie

  • CALEGARI, Frank, DIMITROV, Vesselin, et TANG, Yunqing. Arithmetic holonomy bounds and effective Diophantine approximation. arXiv preprint arXiv:2510.04156, 2025. - https://doi.org/10.48550/arXiv.2510.04156
  • CALEGARI, Frank, DIMITROV, Vesselin, et TANG, Yunqing. The linear independence of $1 $, $\zeta (2) $, and $ L (2,\chi_ {-3}) $. arXiv preprint arXiv:2408.15403, 2024. - https://doi.org/10.48550/arXiv.2408.15403

Document(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis