Basic reductions of abelian varieties
De Yunqing Tang
Elkies proved that an elliptic curve over Q has infinitely many supersingular reductions. The generalization of the 0-dimensional supersingular locus of the modular curve is the so called basic locus of a Shimura curve at a good prime. In this talk, we generalize Elkies’s theorem to some abelian varieties over totally real fields parametrized by certain unitary Shimura curves arising from the moduli spaces of cyclic covers of the projective line ramified at 4 points. This is joint work in progress with Wanlin Li, Elena Mantovan, and Rachel Pries.