2024 - T2 - WS2 - Group actions with hyperbolicity and measure rigidity

Collection 2024 - T2 - WS2 - Group actions with hyperbolicity and measure rigidity

Organisateur(s) Brown, Aaron ; Dujardin, Romain ; Filip, Simion ; Fisher, David ; Obata, Davi
Date(s) 27/05/2024 - 31/05/2024
URL associée https://indico.math.cnrs.fr/event/9045/
5 20

Stationary probability measures on projective spaces

De Çagri Sert

We give a description of stationary probability measures on projective spaces for an iid random walk on $\mathrm{PGL}_d(\mathbb{R})$ without any algebraic assumptions. This is done in two parts. In a first part, we study the case (non-critical or block-dominated case) where the random walk has distinct deterministic exponents in the sense of Furstenberg--Kifer--Hennion. In a second part (critical case), we show that if the random walk has only one deterministic exponent, then any stationary probability measure on the projective space lives on a subspace on which the ambient group of the random walk acts semisimply. This connects the critical setting with the work of Guivarc'h--Raugi and Benoist--Quint. Combination of all these works allow to get a complete description. Joint works with Richard Aoun.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2024.T2.WS2.005
  • Citer cette vidéo Sert, Çagri (28/05/2024). Stationary probability measures on projective spaces. IHP. Audiovisual resource. DOI: 10.57987/IHP.2024.T2.WS2.005
  • URL https://dx.doi.org/10.57987/IHP.2024.T2.WS2.005

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis