Numerical methods for SDEs with additive noise and distributional drift: strong and weak error rates
By Elena Issoglio
The Gibbs measure of the renormalized two dimensional stochastic Gross-Pitaevskii equation
By Anne de Bouard
By Paul Melotti
Appears in collection : Les probabilités de demain 2017
Certaines relations polynomiales, telles que les relations vérifiées par les mineurs d'une matrice, peuvent être interprétées comme des relations de récurrence sur Z^3. Dans certains cas, les solutions de ces récurrences présentent une propriété inattendue : ce sont des polynômes de Laurent en les conditions initiales. Peut-on donner une interprétation combinatoire de ce fait ? On verra que lorsqu'un objet combinatoire caché derrière ces relations est identifié, il présente des phénomènes de formes limites qui peuvent être calculées explicitement, le plus connu étant le "cercle arctique" des pavages du diamant aztèque. On parlera des récurrences dites de l'octaèdre, du cube, et d'une récurrence due à Kashaev.