

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
By Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
By Stanislav Smirnov
Appears in collection : Non standard diffusions in fluids, kinetic equations and probability / Diffusions non standards en mécanique des fluides, équations cinétiques et probabilités
Consider random conductances that allow long range jumps. In particular we consider conductances $C_{xy} = w_{xy}|x − y|^{−d−\alpha}$ for distinct $x, y \in Z^d$ and $0 < \alpha < 2$, where $\lbrace w_{xy} = w_{yx} : x, y \in Z^d\rbrace$ are non-negative independent random variables with mean 1. We prove that under some moment conditions for $w$, suitably rescaled Markov chains among the random conductances converge to a rotationally symmetric $\alpha$-stable process almost surely w.r.t. the randomness of the environments. The proof is a combination of analytic and probabilistic methods based on the recently established de Giorgi-Nash-Moser theory for processes with long range jumps. If time permits, we also discuss quenched heat kernel estimates as well. This is a joint work with Xin Chen (Shanghai) and Jian Wang (Fuzhou).