00:00:00 / 00:00:00

Peierls substitution for magnetic Bloch bands

By Stefan Teufel

Appears in collection : Spectral days / Journées méthodes spectrales

We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a corresponding almost invariant subspace. At leading order, our effective Hamiltonian can be interpreted as the Peierls substitution Hamiltonian widely used in physics for non-magnetic Bloch bands. However, while for non-magnetic Bloch bands the corresponding result is well understood, both on a heuristic and on a rigorous level, for magnetic Bloch bands it is not clear how to even define a Peierls substitution Hamiltonian beyond a formal expression. The source of the difficulty is a topological obstruction: In contrast to the non-magnetic case, magnetic Bloch bundles are generically not trivializable. As a consequence, Peierls substitution Hamiltonians for magnetic Bloch bands turn out to be pseudodifferential operators acting on sections of non-trivial vector bundles over a two-torus, the reduced Brillouin zone. As an application of our results we construct a family of canonical one-band Hamiltonians $H_{\theta=0}$ for magnetic Bloch bands with Chern number $\theta\in\mathbb{Z}$ that generalizes the Hofstadter model $H_{\theta=0}$ for a single non-magnetic Bloch band. It turns out that the spectrum of $H_\theta$ is independent of $\theta$ and thus agrees with the Hofstadter spectrum depicted in his famous (black and white) butterfly. However, the resulting Chern numbers of subbands, corresponding to Hall conductivities, depend on $\theta$ , and thus the models lead to different colored butterflies. This is joint work with Silvia Freund.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.18502703
  • Cite this video Teufel, Stefan (10/06/2014). Peierls substitution for magnetic Bloch bands. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18502703
  • URL https://dx.doi.org/10.24350/CIRM.V.18502703

Bibliography

  • J. Asch, H. Over, R. Seiler. Magnetic Bloch analysis and Bochner Laplacians. J. Geom. Phys. 13, 275–288, 1994 - http://dx.doi.org/10.1016/0393-0440(94)90035-3
  • A. Avila and S. Jitomirskaya. Solving the Ten Martini Problem. Lecture Notes in Physics 690, pages 5–16, 2006 - https://zbmath.org/?q=an:1166.47303
  • J. Bellissard. C²-algebras in solid state physics. 2D electrons in a uniform magnetic field. Volume II of Operator algebras and applications, University Press, 1988 - https://www.zbmath.org/?q=an:0677.46055
  • J. Bellissard, A. van Elst, and H. Schulz-Baldes. The Noncommutative Geometry of the Quantum Hall-Effect. Journal of Mathematical Physics, 35(10):5373–5451, 1994 - http://dx.doi.org/10.1063/1.530758
  • J. Bellissard, C. Kreft, and R. Seiler. Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods. Journal of Physics A: Mathematical and General 24(10):2329, 1991 - http://dx.doi.org/10.1088/0305-4470/24/10/019
  • E. I. Blount. Formalisms of band theory. Solid State Physics 13, Academic Press, New York, 305–373, 1962 - http://dx.doi.org/10.1016/s0081-1947(08)60459-2
  • V. Buslaev. Semiclassical approximation for equations with periodic coefficients. Russ. Math. Surveys 42, 97–125 (1987) - http://dx.doi.org/10.1070/RM1987v042n06ABEH001502
  • G. De Nittis. Hunting colored (quantum) butterflies: a geometric derivation of the TKNN-equations. PhD thesis, SISSA, Trieste, Italy, 2010
  • G. De Nittis and M. Lein. Applications of magnetic PsiDO techniques to SAPT. Rev. Math. Phys., 23:233–260, 2011 - http://arxiv.org/abs/1006.3103v4
  • G. De Nittis and G. Panati. Effective models for conductance in magnetic fields: derivation of Harper and Hofstadter models. Preprint, 2010 - http://arxiv.org/abs/1007.4786
  • M. Dimassi, J.-C. Guillot, and J. Ralston. On Effective hamiltonians for adiabatic perturbations of magnetic Schrödinger operators.Asymptotic Analysis, 40, 137– 146, 2004 - https://www.zbmath.org/?q=an:1130.81344
  • B. A. Dubrovin and S. P. Novikov. Ground states in a periodic field. Magnetic Bloch functions and vector bundles. Soviet Math. Dokl, volume 22, pages 240– 244, 1980 - https://www.zbmath.org/?q=an:0489.46055
  • Ground states of a two-dimensional electron in a periodic field. Soviet Physics JETF, 52: 511–516, 1980
  • M. Dimassi and J. Sjöstrand. Spectral asymptotics in the semiclassical limit, volume 268 of London Mathematical Society Lecture Note Series. Cambridge univer- sity Press, Cambridge, 1999
  • S. Freund. Effective Hamiltonians for magnetic Bloch bands. PhD thesis, Universität Tübingen, 2013
  • O. Gat and J. Avron. Semiclassical Analysis and Magnetization of the Hofstadter Model, Phys. Rev. Let. 91, 186801, 2003 - http://dx.doi.org/10.1103/physrevlett.91.186801
  • O. Gat and J. Avron. Magnetic fingerprints of fractal spectra and the duality of Hofstadter models, New J. Phys. 44, 44.1–44.8, 2003 - http://dx.doi.org/10.1088/1367-2630/5/1/344
  • C. Gérard, A. Martinez and J. Sjöstrand. A Mathematical Approach to the Effective Hamiltonian in Perturbed Periodic Problems. Commun. Math. Phys. 142, 217– 244, 1991 - http://dx.doi.org/10.1007/bf02102061
  • C. Gérard and F. Nier. Scattering Theory for the Perturbations of Periodic Schrödinger Operators. J. Math. Kyoto Univ., 38(4):595–634, 1998 - https://zbmath.org/?q=an:0934.35111
  • V. Geyler, and I. Popov. Group-theoretical analysis of lattice Hamiltonians with a magnetic field. Physics Letters A 201, 359–364, 1995 - https://zbmath.org/?q=an:1020.82522
  • J. Guillot, J. Ralston, and E. Trubowitz. Semiclassical asymptotics in solid state physics. Commun. Math. Phys. 116, 401–415, 1988 - http://dx.doi.org/10.1007/bf01229201
  • S. Hansen Rayleigh-type surface quasimodes in general linear elasticity. preprint, 2010 - http://arxiv.org/abs/1008.2930v2
  • B. Helffer and J. Sjöstrand. Analyse semiclassique pour l'equation de Harper II. Mémoires de la S.M.F. 40, 1990 - https://www.zbmath.org/?q=an:0714.34131
  • B. Helffer and J. Sjöstrand. On diamagnetism and de Haas-van Alphen effect. Ann. I. Henri Poincaré. Physique Théorique 52, 303–375, 1990 - https://www.zbmath.org/?q=an:0715.35070
  • D. R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14(6):2239–2249, 1976 - http://dx.doi.org/10.1103/physrevb.14.2239
  • L. Hörmander. The Analysis of Partial Differential Operators III. Grundlehren der mathematischen Wissenschaften. Springer, 1985 - https://www.zbmath.org/?q=an:0601.35001
  • F. Hövermann, H. Spohn, and S. Teufel. Semiclassical limit for the Schrödinger equation with a short scale periodic potential. Commun. Math. Phys. 215, 609– 629, 2001 - http://dx.doi.org/10.1007/s002200000314
  • A. Martinez and V. Sordoni. A general reduction scheme for the time-dependent Born-Oppenheimer approximation. C. R. Math. Acad. Sci. Paris 334 185–188, 2002 - https://zbmath.org/?q=an:1079.81524
  • G. Nenciu. Dynamics of Band Electrons in Electric and Magnetic-Fields - Rigorous Justification of the Effective-Hamiltonians. Reviews of Modern Physics 63, 91–128, 1991 - http://dx.doi.org/10.1103/revmodphys.63.91
  • G. Nenciu. On asymptotic perturbation theory for quantum mechanics: almost invariant subspaces and gauge invariant magnetic perturbation theory. Journal of Mathematical Physics, 43:1273, 2002 - http://dx.doi.org/10.1063/1.1408281
  • G. Nenciu and V. Sordoni. Semiclassical limit for multistate Klein-Gordon systems: Almost invariant subspaces, and scattering theory. J. Math. Phys., 45(9):3676– 3696, 2004 - http://dx.doi.org/10.1063/1.1782279
  • S. P. Novikov. Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers. Soviet Math. Dokl, volume 23, pages 298–303, 1981 - https://www.zbmath.org/?q=an:0483.46054
  • D. Osadchy and J. E. Avron. Hofstadter butterfly as quantum phase diagram. J. Math. Phys. 42, 5665–567, 2001 - http://dx.doi.org/10.1063/1.1412464
  • G. Panati. Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré 8, 995–1011, 2007 - http://dx.doi.org/10.1007/s00023-007-0326-8
  • G. Panati, H. Spohn, and S. Teufel. Space-adiabatic perturbation theory. Adv. Theor. Math. Phys., 7, 145–204, 2003 - http://arxiv.org/abs/math-ph/0201055v3
  • G. Panati, H. Spohn, and S. Teufel. Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys. 242, 547–578, 2003 - http://dx.doi.org/10.1007/s00220-003-0950-1
  • R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791, 1933 - http://dx.doi.org/10.1007/bf01342591
  • M. J. Pflaum. A deformation-theoretical approach to weyl quantization on riemannian manifolds. Lett. Math. Phys., 45:277–294, 1998 - https://www.zbmath.org/?q=an:0995.53057
  • M. J. Pflaum. The normal symbol on riemannian manifolds. New York Journal of Mathematics, 4:97–125, 1998 - https://www.zbmath.org/?q=an:0903.35099
  • R. Rammal, and J. Bellissard. An algebraic semi-classical approach to Bloch elec- trons in a magnetic field. Journal de Physique 51, 1803–1830, 1990 - http://dx.doi.org/10.1051/jphys:0199000510170180300
  • Y. Safarov. Pseudodifferential operators and linear connections. Proceedings of the London Mathematical Society, 3:379–416, 1998 - https://www.zbmath.org/?q=an:0872.35140
  • H. Schulz-Baldes and S. Teufel. Orbital polarization and magnetization for inde- pendent particles in disordered media. Commun. Math. Phys. 319, 649–681, 2013 - http://dx.doi.org/10.1007/s00220-012-1639-0
  • V. A. Sharafutdinov. Geometric symbol calculus for pseudodifferential operators. I. [Translation of Mat. Tr. 7, 159–206, 2004]. Siberian Adv. Math. 15, 81–125, 2005 - https://www.zbmath.org/?q=an:1081.58016
  • V. A. Sharafutdinov. Geometric symbol calculus for pseudodifferential operators. II. [Translation of Mat. Tr. 8, 176–201, 2005]. Siberian Adv. Math. 15, 71–95, 2005 - https://www.zbmath.org/?q=an:1082.58025
  • H.-M. Stiepan. Adiabatic perturbation theory for Magnetic Bloch Bands. PhD thesis, Universität Tübingen, 2011
  • H.-M. Stiepan and S. Teufel. Semiclassical approximations for Hamiltonians with operator-valued symbols. Commun. Math. Phys. 320, 821–849, 2013 - http://dx.doi.org/10.1007/s00220-012-1650-5
  • G. Sundaram and Q. Niu. Wave-packet dynamics in slowly perturbed crystals, gradient corrections and Berry-phase effects. Phys. Rev. B, 59, 14195–14925, 1999 - http://dx.doi.org/10.1103/physrevb.59.14915
  • S. Teufel. Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics Vol. 1821, Springer-Verlag, Berlin, 2003 - https://www.zbmath.org/?q=an:1053.81003
  • S. Teufel. Semiclassical approximations for adiabatic slow-fast systems. Europhysics Letters 98, 50003, 2012 - http://dx.doi.org/10.1209/0295-5075/98/50003
  • D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. Den Nijs. Quantized Hall conductance in a two-dimensional periodic potential Phys. Rev. Lett., 49(6):405– 408, 1982 - http://dx.doi.org/10.1103/physrevlett.49.405
  • H. Widom. Families of pseudodifferential operators. Topics in Functional Analysis (I. Gohberg and M. Kac, eds.), Academic Press, New York, pp. 345–395, 1978
  • H. Widom. A complete symbolic calculus for pseudodifferential operators. Bull. Sci. Math. (2)104, 19–63, 1980 - https://www.zbmath.org/?q=an:0434.35092
  • D. Xiao, M. C. Chang, Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959–2007, 2010 - http://dx.doi.org/10.1103/revmodphys.82.1959
  • J. Zak. Dynamics of electrons in solids in external fields. Phys. Rev., 168:686-695, 1968 - http://dx.doi.org/10.1103/physrev.168.686
  • J. Zak. Effective Hamiltonians and magnetic energy bands? Physics Letters A 117, 367–371, 1986 - http://dx.doi.org/10.1016/0375-9601(86)90683-3
  • J. Zak. Exact symmetry of approximate effective Hamiltonians Phys. Rev. Lett. 67, 2565–2568, 1981 -

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback