Appears in collections : Cluster algebras: twenty years on / Vingt ans d'algèbres amassées, Exposés de recherche
In joint work with Konstanze Rietsch (arXiv:1712.00447), we use the $\mathcal{X}$-cluster structure on the Grassmannian and the combinatorics of plabic graphs to associate a Newton-Okounkov body to each $\mathcal{X}$-cluster. This gives, for each $\mathcal{X}$-cluster, a toric degeneration of the Grassmannian. We also describe the Newton-Okounkov bodies quite explicitly: we show that their facets can be read off from $\mathcal{A}$-cluster expansions of the superpotential. And we give a combinatorial formula for the lattice points of the Newton-Okounkov bodies, which has a surprising interpretation in terms of quantum Schubert calculus.