00:00:00 / 00:00:00

Moments of a Thue-Morse generating function

By Hugh L. Montgomery

Appears in collection : Prime numbers : new perspectives / Nombres premiers : nouvelles perspectives

Let $s(m)$ denote the number of distinct powers of 2 in the binary representation of $m$. Thus the Thue-Morse sequence is $(-1)^{s(m)}$ and $T_n(x)=\sum_{0\leq m< 2^n}(-1)^{s(m)}e(mx)=\prod_{0\leq r< n}(1-e(2^rx))$ is a trigonometric generating generating function of the sequence. The work of Mauduit and Rivat on $(-1)^{s(p)}$ depends on nontrivial bounds for $\left | T_n \right |_1$ and for $\left | T_n \right |_\infty $. We consider other norms of the $T_n$. For positive integers $k$ let $M_k(n)=\int_{0}^{1}\left | T_n(x) \right |^{2k}dx$ We show that the sequence $M_k(n)$ satisfies a linear recurrence of order $k$. Moreover, we determine a $k\times k$ matrix whose characteristic polynomial determines this linear recurrence. This is joint work with Mauduit and Rivat.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.18610603
  • Cite this video Montgomery, Hugh L. (12/02/2014). Moments of a Thue-Morse generating function. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18610603
  • URL https://dx.doi.org/10.24350/CIRM.V.18610603

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback