![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Prime numbers : new perspectives / Nombres premiers : nouvelles perspectives
Let $s(m)$ denote the number of distinct powers of 2 in the binary representation of $m$. Thus the Thue-Morse sequence is $(-1)^{s(m)}$ and $T_n(x)=\sum_{0\leq m< 2^n}(-1)^{s(m)}e(mx)=\prod_{0\leq r< n}(1-e(2^rx))$ is a trigonometric generating generating function of the sequence. The work of Mauduit and Rivat on $(-1)^{s(p)}$ depends on nontrivial bounds for $\left | T_n \right |_1$ and for $\left | T_n \right |_\infty $. We consider other norms of the $T_n$. For positive integers $k$ let $M_k(n)=\int_{0}^{1}\left | T_n(x) \right |^{2k}dx$ We show that the sequence $M_k(n)$ satisfies a linear recurrence of order $k$. Moreover, we determine a $k\times k$ matrix whose characteristic polynomial determines this linear recurrence. This is joint work with Mauduit and Rivat.