00:00:00 / 00:00:00

Appears in collection : Random Geometry / Géométrie aléatoire

We consider planar rooted random trees whose distribution is even for fixed height $h$ and size $N$ and whose height dependence is of exponential form $e^{-\mu h}$. Defining the total weight for such trees of fixed size to be $Z^{(\mu)}_N$, we determine its asymptotic behaviour for large $N$, for arbitrary real values of $\mu$. Based on this we evaluate the local limit of the corresponding probability measures and find a transition at $\mu=0$ from a single spine phase to a multi-spine phase. Correspondingly, there is a transition in the volume growth rate of balls around the root as a function of radius from linear growth for $\mu<0$ to the familiar quadratic growth at $\mu=0$ and to cubic growth for $\mu> 0$.

Information about the video

Citation data

Domain(s)

Bibliography

  • DURHUUS, Bergfinnur et ÜNEL, Meltem. Trees with exponential height dependent weight. arXiv preprint arXiv:2112.06570, 2021. - https://arxiv.org/abs/2112.06570

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback