Appears in collections : Algebra, deformations and quantum groups / Algèbre, déformations et groupes quantiques, Exposés de recherche
Let $\mathfrak{h}$ be a finite dimensional real Leibniz algebra. Exactly as the linear dual space of a Lie algebra is a Poisson manifold with respect to the Kostant-Kirillov-Souriau (KKS) bracket, $\mathfrak{h}^²$ can be viewed as a generalized Poisson manifold. The corresponding bracket is roughly speaking the evaluation of the KKS bracket at $0$ in one variable. This (perhaps strange looking) bracket comes up naturally when quantizing $\mathfrak{h}^²$ in an analoguous way as one quantizes the dual of a Lie algebra. Namely, the product $X \vartriangleleft Y = exp(ad_X)(Y)$ can be lifted to cotangent level and gives than a symplectic micromorphism which can be quantized by Fourier integral operators. This is joint work with Benoit Dherin (2013). More recently, we developed with Charles Alexandre, Martin Bordemann and Salim Rivire a purely algebraic framework which gives the same star-product.