Prime numbers and automatic sequences: determinism and randomness / Nombres premiers et suites automatiques : aléa et déterminisme

Collection Prime numbers and automatic sequences: determinism and randomness / Nombres premiers et suites automatiques : aléa et déterminisme

Organizer(s) Dartyge, Cécile ; Drmota, Michael ; Martin, Bruno ; Mauduit, Christian ; Rivat, Joël ; Stoll, Thomas
Date(s) 5/22/17 - 5/26/17
linked URL http://conferences.cirm-math.fr/1595.html
00:00:00 / 00:00:00
1 5

Angles of Gaussian primes

By Zeév Rudnick

Also appears in collection : Exposés de recherche

Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a random matrix model and by function field considerations.

Information about the video

Citation data

Domain(s)

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback