PRACQSYS 2018: Principles and Applications of Control in Quantum Systems

Collection PRACQSYS 2018: Principles and Applications of Control in Quantum Systems

Organizer(s) Brion, Etienne ; Diamanti, Eleni ; Ourjoumtsev, Alexei ; Rouchon, Pierre
Date(s) 02/07/2018 - 06/07/2018
linked URL https://sites.google.com/view/mcqs2018/pracqsys-2018
00:00:00 / 00:00:00
19 29

Hybrid quantum/classical computing on a 19-qubit processor based on parametrically-activated entangling gates

By Nicolas Didier

Superconducting devices are one of the most promising platforms for building quantum computers, but demonstrating fault-tolerance on any quantum computing implementation remains a challenge. In recent years new hybrid quantum/classical algorithms targeting near-term devices have been proposed, focusing on short-depth parameterized quantum circuits and using quantum computation as a subroutine embedded in a larger classical optimization loop, without the immediate need for fault-tolerance. Rigetti Computing has built a flexible computing platform targeting precisely such hybrid applications, relying on custom entangling gates based on parametrically-activated interactions. In this talk I will explain the physics behind these two-qubit gates, how it enables the implementation of two distinct classes of entangling operations, and describe many features that make this architecture attractive from a scalability perspective. Finally, I will present how this gate architecture was used to demonstrate a hybrid algorithm for an unsupervised machine learning task known as clustering on a 19-qubit processor.

Information about the video

  • Date of recording 04/07/2018
  • Date of publication 13/07/2018
  • Institution IHP
  • Licence CC BY-NC-ND
  • Format MP4

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback