Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques

Collection Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques

Organizer(s) Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad
Date(s) 02/12/2024 - 06/12/2024
linked URL https://conferences.cirm-math.fr/3085.html
00:00:00 / 00:00:00
3 5

Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus

By Isabelle Chalendar

Let $\mathrm{X}$ be a topological space of holomorphic functions on the open unit disc $D$. The study of the geometry of a space $X$ is centered on the identification of the linear isometries on $\mathrm{X}$, and there is an obvious connection between weighted composition operators and isometries. This connection can be traced back to Banach himself and emphasized by Forelli, El-Gebeily, Wolfe, Kolaski, Cima, Wogen, Colonna and many others. A characterisation is given of all the linear isometries of Hol($\Omega$), the Fr´ echet space of all holomorphic functions on $\Omega$ when $\Omega$ is the unit disc or an annulus, endowed with one of the standard metrics. Further, the larger class of operators isometric when restricted to one of the defining seminorms is identified. This is a joint work with Lucas Oger and Jonathan Partington.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20273303
  • Cite this video Chalendar, Isabelle (03/12/2024). Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20273303
  • URL https://dx.doi.org/10.24350/CIRM.V.20273303

Bibliography

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries on the annulus: description and spectral properties. arXiv preprint arXiv:2409.16105, 2024. - https://doi.org/10.48550/arXiv.2409.16105
  • ARENDT, Wolfgang, BERNARD, Eddy, CELARIES, Benjamin, et al. Spectral properties of weighted composition operators on Hol(\mathbb{D}) induced by rotations, Indiana Univ. Math. J. 72 (2023), 1789-1820 - https://doi.org/10.1512/iumj.2023.72.9511
  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries of Hol (D). Journal of Mathematical Analysis and Applications, 2024, p. 128619. - https://doi.org/10.1016/j.jmaa.2024.128619
  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R., Linear and isometries on the annulus: description and spectral properties, submitted
  • EL-GEBEILY, Mohamad et WOLFE, John. Isometries of the disc algebra. Proceedings of the American Mathematical Society, 1985, vol. 93, no 4, p. 697-702. - https://doi.org/10.1090/S0002-9939-1985-0776205-9
  • FORELLI, Frank. The isometries of Hp. Canadian Journal of Mathematics, 1964, vol. 16, p. 721-728. - https://doi.org/10.4153/CJM-1964-068-3

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback