Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques

Collection Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques

Organizer(s) Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad
Date(s) 02/12/2024 - 06/12/2024
linked URL https://conferences.cirm-math.fr/3085.html
00:00:00 / 00:00:00
4 5

Common range of co-analytic Toeplitz operators on the Drury-Arveson space

By John McCarthy

We shall describe $\cap_m \operatorname{ran} M_m^²$, where $m$ ranges over the cyclic multipliers of the DruryArveson space $H_d^2$, and $M_m$ denotes multiplication by $m$ on $H_d^2$. I will try to convince the audience that there is some interesting functional analysis behind the description.

This is joint work with Alexander Aleman, Michael Hartz and Stefan Richter.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20273603
  • Cite this video McCarthy, John (03/12/2024). Common range of co-analytic Toeplitz operators on the Drury-Arveson space. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20273603
  • URL https://dx.doi.org/10.24350/CIRM.V.20273603

Bibliography

  • AGLER, Jim et MCCARTHY, John E. Complete Nevanlinna–Pick kernels. Journal of Functional Analysis, 2000, vol. 175, no 1, p. 111-124. - https://doi.org/10.1006/jfan.2000.3599
  • AGLER, Jim et MCCARTHY, John E. Pick interpolation and Hilbert function spaces. American Mathematical Society, 2023. - https://doi.org/10.1090/gsm/044
  • ALEMAN, Alexandru, HARTZ, Michael, MCCARTHY, John E., et al. The Smirnov class for spaces with the complete Pick property. Journal of the London Mathematical Society, 2017, vol. 96, no 1, p. 228-242. - https://doi.org/10.1112/jlms.12060
  • ALEMAN, Alexandru, HARTZ, Michael, MCCARTHY, John E., et al. Factorizations induced by complete Nevanlinna–Pick factors. Advances in Mathematics, 2018, vol. 335, p. 372-404. - https://doi.org/10.1016/j.aim.2018.07.013
  • ALEMAN, Alexandru, HARTZ, Michael, MCCARTHY, John E., et al. Multiplier tests and subhomogeneity of multiplier algebras. Documenta Mathematica, 2022, vol. 27, p. 719-764. - https://doi.org/10.48550/arXiv.2008.00981
  • ARVESON Whilliam .Subalgebras of C²-algebras III: Multivariable operator theory. Acta Math. 181 (2) 159 - 228, 1998 - https://doi.org/10.1007/BF02392585
  • BORICHEV, Alexander, FRANK, Rupert, et VOLBERG, Alexander. Counting eigenvalues of Schr\" odinger operator with complex fast decreasing potential. arXiv preprint arXiv:1811.05591, 2018. - https://doi.org/10.48550/arXiv.1811.05591
  • DAVIDSON, Kenneth, RAMSEY, Christopher, et SHALIT, Orr. Operator algebras for analytic varieties. Transactions of the American Mathematical Society, 2015, vol. 367, no 2, p. 1121-1150. - https://doi.org/10.1090/S0002-9947-2014-05888-1
  • DAVIS, B. Mark et MCCARTHY, John E. Multipliers of de Branges spaces. Michigan Math. J, 1991, vol. 38, no 2, p. 225-240. - https://doi.org/10.1307/mmj/1029004330
  • EDGAR, G. A. Two function-space topologies. Proceedings of the American Mathematical Society, 1973, vol. 39, no 1, p. 219-220. - https://doi.org/10.1090/S0002-9939-1973-0313771-3
  • EDWARDS, Robert E. Functional Analysis: Theory and Applications. Dover, New York. 1995.
  • EL-FALLAH, Omar, KELLAY, Karim, MASHREGHI, Javad, et al. A primer on the Dirichlet space. Cambridge University Press, 2014. - https://doi.org/10.1017/CBO9781107239425
  • GARNETT, John. Bounded analytic functions.GTM Vol.236 . Springer Science & Business Media, 2006. - https://doi.org/10.1007/0-387-49763-3
  • HARTZ, Michael. On the isomorphism problem for multiplier algebras of Nevanlinna-Pick spaces. Canadian Journal of Mathematics, 2017, vol. 69, no 1, p. 54-106. - https://doi.org/10.4153/CJM-2015-050-6
  • HELSON, Henry. Large analytic functions. II. in Analysis and partial differential equations, 1990, vol. 122, p. 217-220.
  • KORENBLUM, Boris et MCCARTHY, John E. The range of Toeplitz operators on the ball. Revista Matemática Iberoamericana, 1996, vol. 12, p. 47-62. - https://doi.org/10.4171/rmi/194
  • MCCARTHY, John E. Common range of co-analytic Toeplitz operators. Journal of the American Mathematical Society, 1990, vol. 3, no 4, p. 793-799. - https://doi.org/10.2307/1990902
  • MCCARTHY, John E. Topologies on the Smirnov class. Journal of functional analysis, 1992, vol. 104, no 1, p. 229-241. - https://doi.org/10.1016/0022-1236(92)90096-2
  • NAWROCKI, M. Linear functionals on the Smirnov class of the unit ball in Cn. Annales Fennici Mathematici, 1989, vol. 14, no 2, p. 369-379. - https://doi.org/10.5186/aasfm.1989.1421
  • PAU, Jordi et PELÁEZ, José. On the zeros of functions in Dirichlet-type spaces. Transactions of the American Mathematical Society, 2011, vol. 363, no 4, p. 1981-2002. - https://doi.org/10.1090/S0002-9947-2010-05108-6
  • PRIWALOW I. I. . Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.
  • RUDIN Walter. Function Theory in the unit ball of Cn, Springer-Verlag, Berlin, 1980
  • RUDIN Walter. New constructions of functions holomorphic in the unit ball of cn, C.B.M.S. No. 63, American Mathematical Society, Providence, 1986.
  • RUDIN Walter. Functional analysis, Second, International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991
  • SARASON, Donald. Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes, Wiley, New York, 1994
  • SHALIT, Orr. (2015). Operator theory and function theory in drury-arveson space and its quotients. In Operator Theory (Vol. 2-2, pp. 1125-1180). Springer Basel. - https://doi.org/10.1007/978-3-0348-0667-1_60
  • SHAPIRO, Joel H. et SHIELDS, Allen L. Unusual topological properties of the Nevanlinna class. American Journal of Mathematics, 1975, vol. 97, no 4, p. 915-936. - https://doi.org/10.2307/2373681
  • WILANSKY Albert, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978
  • YANAGIHARA Niro .The containing Fréchet space for the class N +. Duke Math. J. 40 (1) 93 - 103, March 1973 - https://doi.org/10.1215/S0012-7094-73-04010-6
  • YANAGIHARA, Niro. Multipliers and linear functionals for the class 𝑁⁺. Transactions of the American Mathematical Society, 1973, vol. 180, p. 449-461. - https://doi.org/10.1090/S0002-9947-1973-0338382-X
  • YANAGIHARA, Niro. Mean growth and Taylor coefficients of some classes of functions. Annales Polonici Mathematici 30 (1). 1974. p. 37-48. - http://eudml.org/doc/263410

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback