Diophantine approximation and transcendence 2025 / Approximation diophantienne et transcendance 2025

Collection Diophantine approximation and transcendence 2025 / Approximation diophantienne et transcendance 2025

Organizer(s) Bugeaud, Yann ; Demarco, Laura ; Gaudron, Eric ; Habegger, Philipp
Date(s) 10/11/2025 - 14/11/2025
linked URL https://conferences.cirm-math.fr/3367.html
00:00:00 / 00:00:00
2 6

We will first briefly discuss our approach to prove irrationality of certain periods. Our method uses rational approximations from the literature and we develop a new framework to make use of these approximations. The key ingredient is an arithmetic holonomy theorem built upon earlier work by André, Bost, Charles (and others) on arithmetic algebraization theorems via Arakelov theory. We will then discuss our recent result on irrationality measures. This is joint work with Frank Calegari and Vesselin Dimitrov.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20403303
  • Cite this video Tang, Yunqing (10/11/2025). The arithmetic of power series - Lecture 1. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20403303
  • URL https://dx.doi.org/10.24350/CIRM.V.20403303

Domain(s)

Bibliography

  • CALEGARI, Frank, DIMITROV, Vesselin, et TANG, Yunqing. The linear independence of $1 $, $\zeta (2) $, and $ L (2,\chi_ {-3}) $. arXiv preprint arXiv:2408.15403, 2024. - https://doi.org/10.48550/arXiv.2408.15403
  • CALEGARI, Frank, DIMITROV, Vesselin, et TANG, Yunqing. Arithmetic holonomy bounds and effective Diophantine approximation. arXiv preprint arXiv:2510.04156, 2025. - https://doi.org/10.48550/arXiv.2510.04156

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback