From $Q$-systems to quantum affine algebras and beyond
By Rinat Kedem
Also appears in collection : Exposés de recherche
The theory of cluster algebras has proved useful in proving theorems about the characters of graded tensor products or Demazure modules, via the $Q$-system. Upon quantization, the algebra associated with this system is shown to be related to a quantum affine algebra. Graded characters are related to a polynomial representation of the quantum cluster variables. This immediately suggests a further deformation to the spherical DAHA, quantum toroidal algebras and elliptic Hall algebras.