2025 - T1 - WS1 - Intertwining operators and geometry

Collection 2025 - T1 - WS1 - Intertwining operators and geometry

Organizer(s) Frahm, Jan ; Pasquale, Angela
Date(s) 20/01/2025 - 24/01/2025
linked URL https://indico.math.cnrs.fr/event/10856/
20 21

Let ${\mathrm{E}}_n({\mathbb{C}})$ denote the connected complex Lie group of type ${\mathrm{E}}_n$ for $n = 6, 7$. These two groups contain the following reductive pairs:

$\begin{align} T_1({\mathbb{C}}) \times {\mathrm{Spin}}(10,{\mathbb{C}}) & \subset {\mathrm{E}}_6({\mathbb{C}}), \cr T_2({\mathbb{C}}) \times {\mathrm{Spin}}(8,{\mathbb{C}}) & \subset {\mathrm{E}}_6({\mathbb{C}}), \cr T_1({\mathbb{C}}) \times {\mathrm{E}}_6({\mathbb{C}}) & \subset {\mathrm{E}}_7({\mathbb{C}}), \end{align}$

where $T_1({\mathbb{C}})$ and $T_2({\mathbb{C}})$ are complex tori of dimensions 1 and 2 respectively. In this talk, I will describe the dual pair correspondences arising from the minimal representations of ${\mathrm{E}}_6({\mathbb{C}})$ and ${\mathrm{E}}_7({\mathbb{C}})$. These are joint projects with Edmund Karasiewicz and Gordan Savin.

Information about the video

Citation data

  • DOI 10.57987/IHP.2025.T1.WS1.020
  • Cite this video Loke, Hung Yean (24/01/2025). Exceptional complex dual pair correspondences. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T1.WS1.020
  • URL https://dx.doi.org/10.57987/IHP.2025.T1.WS1.020

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback