00:00:00 / 00:00:00

Sharp quantitative propagation of chaos

De Daniel Lacker

Apparaît dans la collection : Probability, finance and signal: conference in honour of René Carmona / Probabilités, finance et signal: conférence en l'honneur de René Carmona

The propagation of chaos phenomenon states roughly that a large system of weakly interacting particles will remain approximately independent for all times if initialized as such. This can be quantified in terms of the distance between low-dimensional marginal distributions and suitably chosen product measures. This talk will discuss some recent sharp quantitative results of this nature, both for classical mean field diffusions and for more recently studied non-exchangeable models. These results are driven by a new "local" relative entropy method, in which low-dimensional marginals are estimated iteratively by adding one coordinate at a time, leading to surprising improvements on prior results obtained by "global" arguments such as subadditivity inequalities. In the non-exchangeable setting, we exploit a surprising connection with first-passage percolation.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20348203
  • Citer cette vidéo Lacker, Daniel (20/05/2025). Sharp quantitative propagation of chaos. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20348203
  • URL https://dx.doi.org/10.24350/CIRM.V.20348203

Domaine(s)

Bibliographie

  • LACKER, Daniel, YEUNG, Lane Chun, et ZHOU, Fuzhong. Quantitative propagation of chaos for non-exchangeable diffusions via first-passage percolation. arXiv preprint arXiv:2409.08882, 2024. - https://doi.org/10.48550/arXiv.2409.08882

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis