00:00:00 / 00:00:00

Studying the phase transistion(s) for directed polymers in random environment

De Hubert Lacoin

Apparaît dans la collection : Interacting particle systems and related fields / Systèmes de particules en interaction et domaines connexes

The Directed Polymer in a Random Environment is obtained by weighting the trajectories of finite length simple random walk using an i.i.d. random environment. It is one of the simplest disordered models in statistical mechanics, and one for which the disorder-induced phase transition has been intensively studied. When the intensity of the disorder increases, the systems behavior changes drastically: at high temperature (low disorder intensity) the trajectories of the polymer are diffusive with a behavior which is very similar to that of the simple random walk, at low temperature, the trajectories of the polymer are conjecture to concentrate on a narrow space-time corridor, and its end-point distribution is localized. In this talk we will survey recent results obtained in collaboration with S. Junk concerning the sharpness and smoothness of this transition.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20390903
  • Citer cette vidéo Lacoin, Hubert (22/09/2025). Studying the phase transistion(s) for directed polymers in random environment . CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20390903
  • URL https://dx.doi.org/10.24350/CIRM.V.20390903

Domaine(s)

Bibliographie

  • JUNK, Stefan et LACOIN, Hubert. Strong disorder and very strong disorder are equivalent for directed polymers. arXiv preprint arXiv:2402.02562, 2024. - https://doi.org/10.48550/arXiv.2402.02562
  • JUNK, Stefan et LACOIN, Hubert. The tail distribution of the partition function for directed polymers in the weak disorder phase. Communications in Mathematical Physics, 2025, vol. 406, no 3, p. 48. - https://doi.org/10.1007/s00220-025-05246-0
  • LACOIN, Hubert. The localization transition for the directed polymer in a random environment is smooth. arXiv preprint arXiv:2505.13382, 2025. - https://doi.org/10.48550/arXiv.2505.13382

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis