00:00:00 / 00:00:00

Apparaît dans la collection : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe

Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and provide insight and structure to complex dynamics: I will explain in particular how the conversion between Hubbard trees and external angles amounts to a change of basis, how the limbs and wakes may be defined in the language of group theory, and present a model of the Mandelbrot set consisting of groups. This is joint work with Dzmitry Dudko and Volodymyr Nekrashevych.

Informations sur la vidéo

Données de citation

Bibliographie

  • BARTHOLDI, Laurent et NEKRASHEVYCH, Volodymyr V. Iterated monodromy groups of quadratic polynomials, I. Groups, Geometry, and Dynamics, 2008, vol. 2, no 3, p. 309-336. - https://doi.org/10.4171/GGD/42

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis