![[1241] Théorie de l’homotopie motivique et groupes d’homotopie stables, d’après Morel–Voevodsky, Isaksen–Wang–Xu, ...](/media/cache/video_light/uploads/video/Bourbaki.png)

[1241] Théorie de l’homotopie motivique et groupes d’homotopie stables, d’après Morel–Voevodsky, Isaksen–Wang–Xu, ...
De Frédéric Déglise


C-algebras for real reductive symmetric spaces and K-theory
De Shintaro Nishikawa
Apparaît dans la collection : Chromatic Homotopy, K-Theory and Functors / Homotopie chromatique, K-théorie et foncteurs
The classical Barratt-Priddy-Quillen theorem states that the $K$-theory spectrum of the category of finite sets and isomorphisms is equivalent to the sphere spectrum. A more general statement is that for an unbased space $X$, the suspension spectrum $\Sigma_{+}^{\infty} X$ is equivalent to the spectrum associated to the free $E_{\infty}$ space on $X$. In this talk we will present a categorical construction of the latter that is lax monoidal. This compatibility with multiplicative structures is necessary when using this functor to change enrichments, as in the work of Guillou-May.This is joint work with Bert Guillou, Peter May and Mona Merling.