00:00:00 / 00:00:00
2 7

Near-criticality in mathematical models of epidemics

De Malwina Luczak

In an epidemic model, the basic reproduction number $ R_{0}$ is a function of the parameters (such as infection rate) measuring disease infectivity. In a large population, if $ R_{0}> 1$, then the disease can spread and infect much of the population (supercritical epidemic); if $ R_{0}< 1$, then the disease will die out quickly (subcritical epidemic), with only few individuals infected. For many epidemics, the dynamics are such that $ R_{0}$ can cross the threshold from supercritical to subcritical (for instance, due to control measures such as vaccination) or from subcritical to supercritical (for instance, due to a virus mutation making it easier for it to infect hosts). Therefore, near-criticality can be thought of as a paradigm for disease emergence and eradication, and understanding near-critical phenomena is a key epidemiological challenge. In this talk, we explore near-criticality in the context of some simple models of SIS (susceptible-infective-susceptible) epidemics in large homogeneous populations.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19612703
  • Citer cette vidéo Luczak Malwina (20/02/2020). Near-criticality in mathematical models of epidemics. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19612703
  • URL https://dx.doi.org/10.24350/CIRM.V.19612703


Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow


  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis