00:00:00 / 00:00:00

Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics

De Stanislav Smirnov

Apparaît dans la collection : Perfectly matched perspectives on statistical mechanics, combinatorics and geometry / Perspectives couplées sur la mécanique statistique, la combinatoire et la géométrie

Even before the introduction of Conformal Field Theory by Belavin, Polyakov and Zamolodchikov, it appeared indirectly in the work of den Nijs and Nienhuis using Coulomb gas techniques. The latter postulate (unrigorously) that height functions of lattice models of statistical mechanics (like percolation, Ising, 6-vertex models etc) converge to the Gaussian Free Field, allowing to derive many exponents and dimensions.This convergence remains in many ways mysterious, in particular it was never formulated in the presence of a boundary, but rather on a torus or a cylinder. We will discuss the original arguments as well as some recent progress, including possible formulations on general domains or Riemann surfaces and their relations to CFT, SLE and conformal invariance of critical lattice models. Interestingly, new objects in complex geometry and potential theory seem to arise.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20364803
  • Citer cette vidéo Smirnov, Stanislav (16/06/2025). Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20364803
  • URL https://dx.doi.org/10.24350/CIRM.V.20364803

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis