2021 - T2 - Symplectic topology, contact topology and interactions

Collection 2021 - T2 - Symplectic topology, contact topology and interactions

Organisateur(s) Colin, Vincent ; Humilière, Vincent ; Massot, Patrick ; Niederkrüger, Klaus ; Oancea, Alexandru ; Vaugon, Anne
Date(s) 19/04/2021 - 16/07/2021
URL associée https://indico.math.cnrs.fr/event/5767/
30 45

Persistence K-Theory

De Paul Biran

Apparaît également dans la collection : Giroux 60 - Convexity in contact and symplectic topology

K-theory, in its classical form, associates to a triangulated category an abelian group called the K-group (or the Grothendieck group). Important invariants of various triangulated categories are known to factor through their K-groups. In this talk we will explain the foundations of persistence K-theory, which is an analogous theory for triangulated persistence categories. In particular we will introduce new persistence measurements coming from these K-groups, and new invariants coming from the combination of the persistence and triangulated structures. In the last part of the talk we will exemplify this new theory on the case of the persistence Fukaya category of Lagrangian submanifolds. In particular we will show how our invariants can distinguish between modules that can represent embedded Lagrangians and those who can represent only immersed ones. Based on joint work with Octav Cornea and Jun Zhang.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis