00:00:00 / 00:00:00

Zero-sum squares in bounded discrepancy {-1,1}-matrices

By Amanda Montejano

Appears in collection : Additive Combinatorics / Combinatoire additive

A square in a matrix $\mathcal M =(a_{ij})$ is a 2X2 sub-matrix of $\mathcal M$ with entries $a_{ij}, a_{i+s,j}, ai,j+s, a_{i+s,j+s}$s for some $s\geq 1$. An Erickson matrix is a square binary matrix that contains no squares with constant entries. In [Eri96], Erickson asked for the maximum value of $n$ for which there exists an n x n Erickson matrix. In [AM08] Axenovich and Manske gave an upper bound of around $2^{2^{40}}$. This gargantuan bound was later improved by Bacher and Eliahou in [BE10] using computational means to the optimal value of 15. In this talk we present the study of a zero-sum analogue of the Erickson matrices problem where we consider binary matrices with entries in {-1,1}. For this purpose, of course, we need to take into account the discrepancy or deviation of the matrix, defined as the sum of all its entries, that is $disc(\mathcal M)= \sum_{1\leq i\leq n \; \; 1\leq j\leq m}a_{i,j}$. A zero-sum square is a square $\mathcal S$ with $disc(\mathcal S) = 0$. A natural question is, for example, the following: is it true that for sufficiently large $n$ every $n\times n {-1,1} - matrix \, \mathcal M$ with $disc(\mathcal M) = 0$ contains a zero-sum square? We answered positive to this question. Since, our proof uses an induction argument, in order for the induction to work we prove the following stronger statement: For $n \geq 5$ and $m \in {n,n+1}$, every $ n \times m {-1, 1}$ -matrix $M$ with $\left | disc(M) \right |\leq n$ contains a zero-sum square except for the triangular matrix (up to symmetries), where a triangular matrix is a matrix with all entries above the diagonal equal to -1 and all remaining entries equal to 1.This is a joint work with Edgardo Roldn-Pensado and Alma R. Arvalo.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19654003
  • Cite this video Montejano, Amanda (08/09/2020). Zero-sum squares in bounded discrepancy {-1,1}-matrices. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19654003
  • URL https://dx.doi.org/10.24350/CIRM.V.19654003

Bibliography

  • [ARM20] A. R. Arvalo, A. Montejano and E. Roldn-Pensado, Zero-sum squares in bounded discrepancy {-1; 1}-matrices, arXiv:2005.07813 (2020). - https://arxiv.org/abs/2005.07813
  • [AM08] M. Axenovich and J. Manske, On monochromatic subsets of a rectangular grid, Integers 8 (2008), A21, 14. - http://math.colgate.edu/~integers/i21/i21.pdf
  • [BE10] R. Bacher and S. Eliahou, Extremal binary matrices without constant 2-squares, J. Comb.1 (2010), no. 1, 77{100. - http://dx.doi.org/10.4310/JOC.2010.v1.n1.a6
  • [Eri96] M. J. Erickson, Introduction to combinatorics, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1996, A Wiley-Interscience Publication. -

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback