Appears in collection : 2025 - T2 - WS1 - Higher rank geometric structures, Higgs bundles and physics

Witten’s conjecture, proved by Kontsevich, states that the generating series for intersection numbers on the moduli space of curves is a tau-function for the KdV integrable hierarchy. It can be reformulated as the statement that the descendant potential of the trivial cohomological field theory is the unique solution to a system of differential constraints that form a representation of the Virasoro algebra, known as Virasoro constraints. In this talk I will present a new generalization of this celebrated result. We study an interesting set of cohomology classes on the moduli space of curves, the $(r,s)$-theta classes, which form a (non-semisimple) cohomological field theory. (Here, $r$ is a positive integer greater than or equal to $2$ is a positive integer between $1$ and $r-1$.) These classes are constructed as the top degrees of the Chiodo classes and can be understood as a vast generalization of the Witten $r$-spin classes and the Norbury classes (the latter being the special case $r=2$, $s=1$). We show that the descendant integrals satisfy the "generalized topological recursion" of Alexandrov, Bychkov, Dunin-Barkowski, Kazarian and Shadrin on the $(r,s)$ spectral curve. As a consequence, we prove that the descendant potential is a tau function for the $r$-KdV integrable hierarchy, generalizing the Brézin-Gross-Witten tau function (the $r=2$, $s=1$ case). We also show that the descendant potential satisfies $W$-constraints: namely, it is annihilated by a collection of differential operators that form a representation of the $W(\mathfrak{gl}_r)$-algebra at self-dual level. Interestingly, the $W$-constraints uniquely fix the potential only in the cases $s=1$ and $s=r-1$.

This is joint work with N. K. Chidambaram, A. Giacchetto and S. Shadrin.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback